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Given Einstein's theory of gravitation, the relaxation-time approximation for a 
general-relativistic Boltzmann equation is studied with a view to demonstrating 
its usefulness in the context of Robertson-Walker universe models. Solutions of 
the full nonlinear equations for the metric and the distribution function are 
examined, together with their relation to linearized perturbations. Emphasis is 
placed on finding analogs of the exact results on strong or weak convergence to 
equilibrium employed in special-relativistic kinetic theory. At the late stages of 
cosmic expansion, an explicit choice of the empirical collision frequency is made 
to fit optimally the relaxation-time model to the "actual" Einstein-Boltzmann 
system. Finally, perspectives for some future generalizations are outlined. 

1. I N T R O D U C T I O N  

At the early and late stages of cosmic expansion, the Einstein-Boltzmann 
coupled system of equations can be used to describe the time evolution of 
a collision-dominated one-component gas of massive particles. Solving this 
system is not simple, but it turns out that there exists a straightforward 
approximate scheme when the matter is only slightly perturbed away from 
the background Robertson-Walker cosmological model. Indeed, under these 
circumstances, the linear perturbation method is a very effective mathematical 
technique which allows a study of general-relativistic dynamics to be feasible. 
With such a method, the metric and the distribution function may be deter- 
mined directly from an analysis of the linearized Einstein-Boltzmann system 
(see, e.g., Banach and Piekarski, 1994a--c). Accordingly, it seems also 
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important to consider the validity of perturbation techniques by finding the 
properties of solutions of the full nonlinear Einstein-Boltzmann system near 
the Robertson-Walker solutions, together with their relation to solutions of 
the linearized field equations. 

Unfortunately, as already remarked, the original Einstein-Boltzmann 
equations are not easy to solve and to analyze, and elementary inspection 
shows that the difficulty in solving the Boltzmann equation is largely due to 
the complicated structure of the nonlinear collision term. Consequently, in 
order to examine the question concerning the range of validity of perturbation 
theories, it is very tempting to try guessing model equations with the same 
basic features as the Boltzmann equation, but simpler to solve. For cosmologi- 
cal problems, a considerable but nontfivial simplification can be achieved if 
one postulates that the collision term takes the Bhatnagar-Gross-Krook form 
(Bhatnagar et al., 1954). In this case, the time evolution of the metric and 
of the distribution function is governed by the general-relativistic system of 
equations, which we call the Einstein-Krook system. 

One major reason for investigating the properties of the Einstein-Krook 
system is as follows: the resulting nonlinear theory may be compared with 
perturbation theory in a much closer way than the original Einstein- 
Boltzmann theory. To illustrate this, we shall give an example. The simplest 
situation is when the space-time geometry is that of a k = 0 Robertson-Walker 
spacetime. Then the discussion of the linearized Einstein-Boltzmann system 
in the late universe allows one to find a necessary and sufficient condition 
under which every small perturbation of the equilibrium distribution function, 
either classical or relativistic, decays to zero as time goes on (Banach and 
Piekarski, 1994a). However, one cannot easily obtain a corresponding condi- 
tion for the full nonlinear Einstein-Boltzmann system, because such a system 
is far less amenable to analytic solution than is its linearized version. On the 
other hand, a systematic description of the time evolution of a Boltzmann 
gas in terms of model equations may give the distinct possibility of gaining 
qualitative insight into the more complicated nonlinear regime. 

In this paper, the Einstein-Krook system is studied with a view to a 
deeper understanding of the connection between linearized solutions and 
solutions of the full nonlinear equations. For simplicity, we assume that the 
metric is of Robertson-Walker form. It is shown that if certain plausible 
inequalities are satisfied, then the Einstein-Krook system drives the molecular 
density for a one-component gas of massive particles toward a Maxwellian 
distribution of microscopic momenta. Moreover, we consider the linearized 
equations to infer that physically reasonable solutions of these equations do 
indeed correspond to solutions of the full nonlinear system. Finally, we 
compare both of these models with one based on the Einstein-Bottzmann 
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theory which has already proved useful in a cosmological setting (Banach 
and Piekarski, 1994c). 

At first sight, the relaxation-time approximation for a Boltzmann gas is 
an ad hoc postulate which does not arise from a rigorous starting point. 
Nevertheless, under conditions appropriate to the introduction of perturbation 
theory, one reasonable method of obtaining a molecular formula for the 
empirical collision frequency would be to guess its form using such guidance 
as is available from a discussion of the linearized Boltzmann equation. The 
agreement with complete theory is found to be very good in this case, and 
one can see from the results that the linearized Einstein-Krook system exhibits 
the same basic features as the corresponding Einstein-Boltzmann system if 
the empirical collision frequency is adequately chosen. This in turn shows 
that the problem of the trend to equilibrium for Robertson-Walker universe 
models is not an artifact of using a phenomenological theory such as the 
relaxation-time kinetic theory. 

Another remark is also in order. Even if the metric were not exactly 
isotropic and spatially homogeneous, as would be the case for perturbations 
near the Robertson-Walker data, the knowledge of properties of the Einstein- 
Krook model may still offer specific advantages in the exploration of some 
of the different aspects of physical cosmology. Among the problems that 
can be studied with this sort of approach, the examination of the effect of 
inhomogeneities on the time development of perturbations presents a most 
interesting challenge. Thus, for example, it would be important to provide a 
rigorous derivation of the Jeans instability via a linearized Einstein-Krook 
system and to show explicitly that the evolution of the distribution function 
is affected by particle horizons. Clearly, we here concern ourselves with 
situations where the pressure does not vanish in the background; otherwise 
the Jeans criterion is irrelevant to this evolution, whether we consider large- 
or small-scale inhomogeneity, because the individual world lines evolve 
independently (see, e.g., Banach and Piekarski, 1994c, Section 6). In any case, 
the relaxation-time approximation will find its most interesting applications in 
considerations of the distribution function for large values of the wave vector, 
away from the usual hydrodynamic regime where more conventional methods 
(relating collision times to representative macroscopic times) are successful. 

We here proceed as follows. To prepare for the discussion, Section 2 
specializes the Einstein-Krook system to the case of homogeneous and iso- 
tropic model universes, flat and positively or negatively curved. Given such 
a specialization, Section 3 in turn formulates a simple theorem of the weak 
trend to equilibrium. Section 4 first derives the linearized perturbation equa- 
tions and then compares the predictions of the Krook and Boltzmann theories 
in a physically interesting context. Section 5 indicates the direction of 
future research. 
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One final word regarding this paper. Some of the results reported in 
Section 3, especially those based on strong or weak convergence to equilib- 
rium, were completed before April 1993. 

. D E S C R I P T I O N  O F  THE EINSTEIN-KROOK SYSTEM 

In the Robertson-Walker spaces, one can choose coordinates so that the 
metric has the form (Misner et al., 1973) 

ds 2 = _c2 dt 2 + [R(t)]w]z[(dxI)2 + (dx2)2 + (d~3)2] 

where 

(2.1a) 

W := 1 + (kl4)[(xl) 2 + (x2) 2 + (x3) 2] (2.1b) 

and where k is the (constant) spatial curvature. By an appropriate choice of 
units, the value of k can be made to be + 1, - 1 ,  or 0. The corresponding 
solutions for the expansion factor R(t) represent, respectively, spaces of 
positive or negative curvature or flat space. 

We shall consider only a simple gas, i.e., an assemblage of material 
particles with a continuous distribution function f( t ,  pr), all having the same 
proper mass m. The components of the particle four-momentum with respect 
to a local orthonormal tetrad {c -10/Ot, (W/R) O/8x ~} will be denoted by p'L 
In our notation, Greek indices range from 0 to 3, Latin indices from 1 to 3. 
We assume for concreteness that f(t ,  pr) depends on pr through q := 
(prp~)l/2. Then the Boltzmann equation may be written as 

O f _  Hq Of j ( f )  (2.2) 
Ot ~q = 

Here J( f )  is a collision term and H is Hubble's parameter defined by H := 
R/R. 

Since Boltzmann's expression for J( f )  is quite formidable, a more phe- 
nomenologicat approach has often been preferred (Bhatnagar et al., 1954), 
based on the use of a relaxation-time approximation of the collision term, 

J( f )  = - v ( f -  F) (2.3) 

where all the physics is supposed to be included in a single function v(t) that 
should be evaluated elsewhere with a specific model. We name v the empirical 
collision frequency. In relativistic theory, one characterizes F by 

:= (2"trh) -3 exp[(~ - cp~ (2.4) 

This is, of course, the Maxwell-Jtittner molecular density (Synge, 1957). 
The question then arises of how to fit the parameters ~(t) and O(t) to the 
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actualf(t,  q). For our nonequilibrium gas, p, and ~ are constrained to satisfy 
the conditions 

qZF dq = n/4,rr, p~ dq = e/4"rrc (2.5) 

in which n is the number density and e is the energy per unit volume: 

n := 4-rr qZfdq, e := 4~rc p~ (2.6) 

Interpreting O(t), we call this object the relativistic temperature of a gas at 
the time t. Clearly, the fitting of F to f is nonlinear in f. Indeed, when we 
come to apply (2.5) to (2.6), we recognize that p~ and 0 are complicated 
functionals off .  Nevertheless, only under the foregoing conditions does the 
resulting nonlinear model exhibit all the elementary, qualitative features of 
the Boltzmann equation; specifically, it admits an easily proved H-theorem. 

The Einstein equations for the expansion factor R(t) given in (2.1a), 
with the energy density of equations (2.6) and the pressure defined by 

may be written as 

p := (4~rc/3) ( l /p~  (2.7) 

H z = (8'nG/3cZ)e - kc2R -2 (2.8a) 

121 + H 2 = -(4~rG/3cZ)(e + 3p) (2.8b) 

where G is Newton's gravitational constant. The equation of conservation of 
energy takes the form 

d + 3(e + p ) H  = 0 (2.9) 

This equation, of course, follows directly from (2.8) and is also consistent 
with the properties of a relaxation-time approximation of the collision term. 
As to the conservation equation for the number density n, we easily find 
from (2.2) and (2.5) that 

nR 3 = const (2.10) 

With all these definitions in mind, the coupled system of governing 
equations forfand R consists of (2.2) and (2.8a), and the remaining cosmologi- 
cal equations are automatically fulfilled because of (2.5). Here and henceforth, 
we shall refer to (2.2) and (2.8a) as the Einstein-Krook system. 
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3. E L E M E N T A R Y  P R O P E R T I E S  OF T H E  R E L A X A T I O N - T I M E  
M O D E L  

3.1. S o m e  Useful  Transformat ions  

In order to integrate completely a simple relaxation-time kinetic equation 

O__f_ Hq Of = - v ( f -  F) (3.1) 
Ot Oq 

it is necessary to be able to determine the dynamical evolution of four 
variables: R(t), Ix(t), O(t), and v(t). In principle, after specifying v, this evolu- 
tion is obtainable from a rigorous analysis of the Einstein-Krook system. 
However, since the parameters ix and a~ depend intricately on f, we must 
reject the possibility that we could solve equations (2.8a) and (3.1) analytically 
for R and f ;  and even if we could, the results would be difficult to describe 
and to interpret. Fortunately, at the late stages of cosmic expansion, there 
are certain relations which it is physically reasonable to assume for the gas- 
state variables. These will be discussed in this section. It turns out that in 
many circumstances these are sufficient to prove the existence of the trend 
to equilibrium, independent of the exact form of R, IX, a~, and v. 

First, if the approximate condition 

a~R 2 = const (3.2) 

illustrates the dependence of a~ on R in the late universe (Peebles, 1980), 
then it is convenient to define the "nonrelativistic" temperature T as follows: 

T:  = bk~lR -2 (3.3) 

In this equation, b is a positive constant which can be calculated uniquely 
by requiring that the quantity 

F := Tla~ (3.4) 

evolves toward one. Clearly, F measures the relative size of the nonrelativistic 
temperature compared to the relativistic temperature. With such a definition 
of T, the result (2.10) changes into an alternative form 

n(27rmkaT) -3/2 = const (3.5) 

Now implement a time-dependent canonical transformation from the 
original variable q to a new variable z obeying 

z := (2mka T)-mq (3.6) 

Turning our attention back to (3.1), we then see that f(t, z) will satisfy a 
transformed equation of the form 
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of(t, z) 
- u(t)[f(t, z) - F(t, z)] (3.7) 

Ot 

where, as before, F stands for the Maxwell-JUttner distribution function. 
The next stage in the discussion is to express F in terms of z and t. After 

a fair amount of algebraic calculation, equations (2.5) may be rewritten as 

exp(~kBO) = (21rh)3147rm2ckBOK2(M)]-ln (3.8a) 

e/mnc 2 = (3/M) + Kt(M)/K2(M) (3.8b) 

where Kr(M), r = 1, 2 . . . . .  ~, are the modified Bessel functions of the 
second kind; M is linearly proportional to the inverse of O: 

M := mc2/kBO (3.9) 

Further, introduce the dimensionless factor 

K := kBTImc 2 (3.10) 

Using the obvious identity p0 = mc(1 + 2KZ2) 1/2, we then find from (2.4) 
and (3.8a) that 

n [ 2Fz 2 ] 
F = 12 (2~rmkBT)3/2 exp 1 + (1 + 2KZ2) 1/2 (3.11) 

Here 12 is given by 

where 

12 := I'3/2[O2(M)]-1 (3.12) 

OE(M) := (2M/'rO uz exp(M) Kz(M) (3.13) 

Equation (3.11) has the advantage that, for 12 = F = 1 and K = 0, the 
Maxwell-Jttttner distribution function F takes the very simple form 

n exp(_zZ) (3.14) 
F = F := (27rmkB T) 3/2 

Such a form is called a Maxwellian molecular density. 
We are now ready to examine the consequences of using the above 

formulas in the context of (3.1). This could hardly be achieved with the full 
nonlinear Boltzmann equation, even though the present type of analysis has 
been successfully applied to the linearized Einstein-Boltzmann system (see, 
e.g., Banach and Piekarski, 1994c). 
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3.2. Evolution of  the Distribution Function at Late Times 

One possible way to determine the evolution of f is simply to integrate 
equation (3.7) from the time to to the time t. It follows that, if f0 - F0 is the 
initial value o f f -  F, and if, moreover, the function F(t, z) is continuously 
differentiable with respect to t, it will always be possible to obtain a formula 
of the form 

f ( t ,  z) = F(t, z) + A(t0, t)[/0(z) - F0(z)] (3.15) 

i - A(o', t)F(tr, z) dtr 
0 

where an overdot indicates differentiation with respect to Gr or t and A((r, t) 
is defined by 

[I. ] A(cr, t) := exp - v(s) ds (3.16) 

with or ranging from to to t. 
Matter is treated here as an assemblage of material particles, which in 

the case of a chemically inert fluid might be a hydrogen gas during the dust- 
dominated epoch, for a redshift Z ----- 1000 until Z ~ 30 or so. Under these 
assumptions, we can compare the relaxation-time model with a full nonlinear 
Boltzmann equation. But the latter provides a most natural route to calculating 
the empirical collision frequency (discussed in Section 3.3 below) and to 
verifying that the rate of growth of v-  1 is no greater than that of the inverse 
of Hubble's parameter H. Thus the following condition arises which we call 
the kinetic-theory condition: There exist times to and tl, tl > to such that 

H(t) > O, v(t) > H(t) (3.17) 

when t ~ [to, tl). Hence, by combining (3.16) and (3.17), one obtains the 
largest upper bound for A(o', t) 

A(cr, t) -< R(cr)lR(t) (3.18) 

where to - o" --< t < tl. 
What one must do now is to differentiate the function F as given by 

(3.11) with respect to time. After a bit of mathematical manipulation which 
employs only the following well-known inequalities [see also Synge (1957), 
equations (370) and (372), pp. 88, 89]: 

1 + (15/8)M -I - -  O2(M ) ~ 1 + (15/8)M -I + (105/128)M -2 
(3.19a) 

and 

-(15/8)M-2[1 + (7/8)M -~] -< dOz(M)/dM <- -(15/8)M -2 
(3.19b) 
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one finds from ~ = -2K/-/and M = K-1F that 

{ [  1 ] 
IF(t, z)l --- 8F(t, z) + z2 It'(t)[ 

+ [~(t) + F(t)z4]K(t)H(t)} (3.20) 

i f H > 0 a n d M >  1. 
Mot ivatedby the above considerations, we can now formulate our 

main theorem. 

Theorem. Let t E [to, q). Consider a situation in which H > 0, v --- H, 
and M > 1. Assume further that there exist positive constants B and C such that 

1 
[P(t) I - BK(t)H(t) = - 2  B~(t) (3.21a) 

and 

Then 

F(t) - C, 1/F(t) <-- C (3.21b) 

If(t, z) - F(t, z) I -- q~(to, z)[R(to)/R(t)] (3.22a) 

where [see equation (3.5)] 

~(to, z) := Ifo(z) - Fo(Z)l + 8nC3/2(27rmkBT) -3/2 

2 C _ l z 2  z 2 
• exp 1 + [1 ~2-~-to)Z2]U2/~1__._, ) + B)(C + + CZ4)K(to) 

(3.22b) 

Proof By (3.3), (3.10), and (3.18) we find that 

i t A((r, t)K(cr)H(cr) &r <- K(to)[R(to)/R(t)] (3.23) 
0 

Since IF(t, z) J satisfies the inequality (3.20), the theorem follows from (3.11), 
(3.12), (3.15), (3.18), (3.19a), (3.21), and (3.23). [] 

Remark. Any attempt to prove the validity of (3.21) is equivalent to 
solving the Einstein-Krook system; this would involve the complete analysis 
of (2.8a) and (3.7), and this we have already rejected. However, perturbation 
theory, which makes it possible in particular cases, will be explained in 
Section 4. 
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Turning to the inequality (3.22a), we now see that there is a trend in 
time: the object I f ( t ,  z)  - F(t,  z) l can be bounded by a function which 
decreases with increasing t. Specifically, if the kinetic-theory condition holds 
for all times (k = - 1, 0; tl = ~; l i m , ~  R(t )  = ~), and if ~ and F approach 
asymptotically 1 (see Section 4), then f ( t ,  z)  evolves toward a Maxwellian 
molecular density F(z)  as given by (3.14). 

One might perhaps conjecture that this kind of behavior is somehow a 
particular feature of the relaxation-time approximation, especially in that the 
expression on the right-hand side of (3.7) contains v and 2~. This, however, 
does not seem to be so. Other, more realistic kinetic equations are known to 
exhibit the same qualitative behavior (Banach and Piekarski, 1994a), and the 
possibility of obtaining a simple bound for I f  - F I may be quite common 
to the Robertson-Walker universe models satisfying (3.17). 

3.3. Identification of the Empirical Collision Frequency 

Our kinetic-theory condition can be explicitly investigated only when 
the collision mechanism, as specified by the scattering cross section, is known. 
In the context of Boltzmann's equation, there will always be a preferred 
family of scattering cross sections representing the so-called relativistic hard 
interactions (Dudyfiski and Ekiel-Je~ewska, 1988). At the late stages of 
cosmic expansion, they give a relationship for v in terms of the number 
density and the nonrelativistic temperature [see, e.g., equations (3.8b) and 
(5.9) in Banach and Piekarski (1994a)]. Precisely speaking, the best expression 
for v, in the sense that it comes nearest to the Boltzmann equation, is given by 

= hcron(47r3/Zm)-l(2mkBT)(l-J)/2 (3.24) 

where X, o-0, and j are constants (h > 0, o'0 > 0, j -> 0). The value j = 1 
arises, for instance, in the case of Maxwellian particles, repelling according 
to the inverse fifth power of the distance. For the hard-sphere model, in turn, 
we set [see footnote 6 in Banach and Piekarski (1994a)] 

j = 0, h - 0.7339(8"rr2), cr o = 2r  z (3.25) 

and characterize the quantity r by saying that 2r is the diameter of the particle. 
The most important physical application of (3.24) and (3.25) is to atomic 

hydrogen at redshifts Z --< 1000. After the epoch of the decoupling of matter 
and radiation, one would expect that the motion of massive particles can be 
considered to be collision-free. B u t  this is no t  a l w a y s  the case .  As an illustra- 
tion, given (3.24) and (3.25), we have carefully verified that our kinetic- 
theory condition, namely the inequality v - H, can be used to study the time 
evolution of a hydrogen gas during the cosmic expansion from Z ~- 1000 to 
Z ~  30. 
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We arrived at the condition v >- H from the attempts to formulate a 
theorem of the trend to equilibrium. However, problems are not so simple 
when the metric is not of Robertson-Walker form. In fact, one knows full 
well that density fluctuations in the early universe would develop into the 
irregularities we observe, and that there is no trend to equilibrium. Because 
of this, attention has been concentrated on the inhomogeneous hydrodynamic 
models, their relative merits, and possible tests. Nevertheless, our comments 
concerning the validity of v --> H in particular situations are not substantially 
modified by the presence of large- or small-scale inhomogeneity (or "dark 
matter" content of the universe) and are necessary to solve a methodological 
problem of physical cosmology illustrated by the following paradox: How 
are we to give a precise meaning to the statement that matter often behaves in 
an essentially hydrodynamic way, whereas the distribution function involves 
infinitely many degrees of freedom? 

First of all, the temporal behavior of f is related to the value of this 
distribution at the initial time. But if the condition (3.17) is assumed to be 
correct over a large range of cosmic times, we can apply the inequality 
A(to, t) <--- R(to)/R(t) to (3.15) and so conclude that since A approaches zero, 
f is effectively expressible in terms of hydrodynamic variables. This point 
of view will be developed further in Section 5, within the framework of 
inhomogeneous world models. Here we only mention the following: In the 
general case, so long as the inequality v --> H holds, the forgetting of the 
initial distribution function is always essential for justifying a series of 
assumptions made in the development of hydrodynamic theories that involve 
finitely many degrees of freedom. 

4. LINEARIZATION PROCEDURE 

4.1.  P r e l i m i n a r i e s  

In an exact description, the Einstein-Krook system would become a 
complicated set of integrodifferential equations for the evaluation of R and 
f. At the late stages of cosmic expansion, another device worth noting is that 
of using perturbation theory to obtain the linearized Einstein-Krook system. 
Let us see a little more explicitly how the formalism works for Robertson- 
Walker universe models. Given (3.11) and (3.14), we first define t~(t, z) and 
0E(t, z) by 

:= F - l ( f  - F) 

and 

I]/E :-= F-~(F - F ) = I ~  exp~z2[l - 
l I 

(4.1a) 

2F ]) 
1 + (1 "~ 2Kz2) l/~ - 1 (4.1b) 
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Clearly, these are natural measures of the deviation o f f  and 2z from a Maxwel- 
lian molecular density. 

From the above characterization plus our notation introduced in the 
previous sections, equations (2.6) and (2.7) for the energy density e and the 
pressure p may be written as 

f; e - 4~ -1/2 fl(1 + 2Kz2) m e x p ( - z  2) [1 + O(t, z)] dz (4.2a) 
mc2n 

P - -  8_ , r r -1 /2  K Z4(1 + 2KZ2) -1/2 exp(--Z 2) [1 + ~(t, Z)I dz (4.2b) 
mc2n 3 

In addition to (4.2), there is a corresponding equation for the number density 
n. Thus, using (3.14) and (4.1a), it follows at once that 

n = 4~r q2fdq = 4~r-U2n z 2 e x p ( - z  a) [1 + ~(t, z)] dz (4.3) 
J 

With the scalar product 

(cpl, ~Pz) := 4~-ua  z a e x p ( - z  a) ~l(z)~pa(z) dz (4.4) 

relation (4.3) leads to the condition 

(1, qJ) = 0 (4.5) 

This condition is nicely consistent with the kinetic equation for 0. Indeed, 
one can use (2.5), (2.6), (3.7), and (4.1) to obtain 

0_~_~ = V(~E -- O) (4.6) 
Ot 

and 

(1, 0) = (1, 0E) (4.7a) 

((1 + 2KZ2) 1/2, t~) = ((1 + 2KZ2) 1/2, q/E) (4.7b) 

in which case one concludes that (1, t~) is a constant. In other words, assuming 
only that (1, 0) vanishes initially, as is always possible, it is enough to 
guarantee the fulfillment of the constraint (4.5) for all times. Clearly, equations 
(4.7) may be viewed as being equivalent to equations (2.5). By substituting 
(4.1b) into (4.7) one then sees that 1) and F depend on time through K := 
kBT/mc 2 and 0: 

f~ = 12(K, ~) (4.8a) 

F = F(K, t~) (4.8b) 
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So far, we have done no more than introduce some useful definitions 
and transformations. However, consider a situation in which K TM and 0 are 
small. Under these circumstances, we may resort to perturbation theory. Here 
we do so by linearizing the expressions on the right-hand side of (4.2) and 
(4.8) with respect to K and b: 

3 
(mc2n) - le  = 1 + (1, b) + ~ ~ + "'" (4.9a) 

(mcZn)- lp  = K + ". .  (4.9b) 

1~= 1 + - - K + ~ ( 1 ,  b ) - ( z  2 , b ) + ' ' "  (4.10a) 

5 2 
F = 1 + ~ K + ( 1 ,  b ) - ~ ( z  2,b) + ' ' "  (4.10b) 

Suppose now that (1, b) and (z 2, b) are of the order K. [Since (1, b) = const 
and (z 2, b) is approximately independent of the time (see Section 4.2), we 
can also assume that (1, b) = 0 and (z 2, b) = 0.1 In the nonrelativistic range 
of temperatures, q := (prpr)l/2 is about (2mkBT) 112 for the vast majority of 
the particles. From (3.6) and K1/4 < <  1 we then conclude that the typical 
value of z is very much smaller than K -l/s, where s = 2, 4. Thus Kz' < <  1 
and the function bE as given by (4.1b) simplifies to 

bE(t, Z) = ~ K(t)Q(z) + (1, b(t)) - z a 

- (zZ,  b ( t ) ) ( 1 -  2z2)  + .-- (4.11) 

where 

15 
Q(z) := - -  - 5z 2 + Z 4 (4.12) 

4 

The manner in which these results form the lowest stage of an approxima- 
tion procedure will become clear below. 

4.2. The Asymptotic System of Equations 

Applying (4.11) to (4.6), one obtain an equation of the form 

1 } 
- -  - ~ KL[QI - L[~] 
ot 

(4.13) 
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where L denotes the linear operator whose action on q0 is characterized by 

L[q~] := q 0 -  (1, q~ ) (5 -  z 2 ) +  (z2, q ~ ) ( 1 - ~ z  2) (4.14) 

For two arbitrary functions q~l and q~2, we have 

(91, L[q~2]) = (L[qh], q~2) (4.15) 

as a consequence of (4.4) and (4.14). Moreover, the independent, isotropic 
solutions of the homogeneous equation L[q~] = 0 are the classical collision 
invariants 1 and z 2. Finally, it is important to note that, because Q is orthogonal 
to 1 and z z, the quantities (1, q~) and (z 2, 0) are constants; here, of course, 
t~ satisfies (4.13). 

We have thus obtained a linearized propagation equation for t~ which 
exhibits the same basic features as the corresponding Boltzmann equation 
[see, e.g., Banach and Piekarski (1994a), equation (3.12)]. Even more, to 
convert all the previous calculations concerning t~ to the present context, one 
must only observe that here L is defined by (4.14), while in Boltzmann's 
theory L is the true linearized collision operator. Hence when both (1, tb) 
and (z 2, ~) vanish initially, the kinetic-theory condition yields 

R(to) (4.16) < 1 K(t)[Q(z)[ + [[0(t0, z)[ + K(to)[Q(z)[] - ~  [t~(t, Z)[ -- 

This result is very much analogous to the result (3.22a). Specifically, if the 
inequa l i ty ,  -> H holds for all times and if the function R(t) increases with 
increasing t, then t~ evolves toward zero. Such is indeed the case, because 
equations (3.3) and (3.10) give K(t) -- R-2(t) .  

It is also straightforward to determine the form of an asymptotic expres- 
sion for ~(t). More explicitly, differentiating equation (4.10b) with respect 
to time, one sees immediately that 

['(t) = - 5K(t)H(t) (4.17) 

In obtaining (4.17) use was made of equations (3.3), (3.10), and (4.13). Here 
is the best place to mention the following: At the late stages of cosmic 
expansion, the results (4.10b) and (4.17) suggest that 

F(t) ~ 1, II'(t)[ --- 5K(t )n( t )  (4.18) 

and hence by (3.21a) and (3.21b) that 

B ~ 5 ,  C ~  1 (4.19) 

Thus the theory of (4.13) is in many respects parallel to that of (3.7), which 
has been already considered. 
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On substituting (3.3) into (3.10), we find that the normalized temperature 
K is related to R by K = b/mc2R 2. Since we are here considering the case 
when v: and ~ are small in some suitable sense, the energy density e and the 
pressure p will take the form 

e = mcZn 1 + {1, t~) + ~ K (4.20a) 

p = mcZnK (4.20b) 

where n evolves at the same rate as R -3, i.e., nR  3 = const. Because of (4.13), 
it is also possible to verify by direct substitution that (4.20) is a solution to 
equation (2.9). The result of differentiating the first of equations (2.8) and 
using (2.9) is equation (2.8b). Given (4.9) and (4.20), we now see that the 
linearized Einstein-Krook system, which governs the temporal evolution of 
R and t~, consists of (2.8a) and (4.13). This system can easily be analyzed, 
especially in the case of a k = 0 Robertson-Walker geometry. 

5. INDICATION OF THE DIRECTION OF FUTURE RESEARCH 

The simplest cosmological models are those which are isotropic and 
spatially homogeneous, and it is natural to look at these first. However, if 
such models are a good approximation to the large-scale geometry of space- 
time in the region that we can observe, then the next step in the analysis is 
to provide a systematic framework for studying the time development of 
irregularities in the matter distribution. The full nonlinear Einstein-Boltzmann 
system is in principle the starting point for all work on these problems, but 
a hint of what to expect may also be obtained from consideration of Einstein's 
field equations and the relaxation-time approximation for a Boltzmann gas. 

Clearly, the resulting system of equations is very complicated and has 
an extremely rich variety of solutions because of its nonlinear character. 
Nevertheless, in one limiting case it becomes fairly simple, namely, when the 
matter is only slighdy perturbed away from the background Robertson-Walker 
model containing a pressure-free gas. Indeed, after replacing the system of 
nonlinear equations by its linearized approximation, we can prove the follow- 
ing result (Banach and Piekarski, 1994c): If the pressure vanishes in the 
background, then the treatment of gases by means of the linearized Einstein- 
Boltzmann system automatically produces a complete scheme of hydrody- 
namics, consisting of a closed set of partial differential equations for the 
evaluation of the mean velocity, the mass density, the temperature or the 
pressure, and the metric. 

The time development of hydrodynamic variables would be completely 
independent of the wavelength of the perturbation if this condition were 
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exactly fulfilled. Thus, in particular, Jeans' discussion of gravitational instabil- 
ity does not apply to the case considered here (vanishing pressure), for the 
temporal evolution is completely unaffected by particle horizons. Suppose, 
however, that the pressure is nonzero in the background. Then the following 
natural problem arises: Can one find exact solutions of the linearized Einstein- 
Boltzmann system which behave in an essentially hydrodynamic way and 
which tend to oscillate as a sound wave when the wavelength is less than the 
Jeans length? The conventional approaches focus exclusively on discussing 
Einstein's theory of gravitation in a small number of variables. Of course, 
since the Einstein-Boltzmann system involves infinitely many degrees of 
freedom, it remains to be seen how useful these simplified approaches will 
prove here. While perhaps some deeper theory would not imply that the 
resulting physical effects were large, it nevertheless seems an important 
question of principle. 

Various generalizations of the present method will always show that a 
derivation of the questions of hydrodynamics is linked to the forgetting of 
the initial distribution function in the way assumed in Section 3.3. Thus the 
kinetic-theory condition is very essential for justifying a series of assumptions 
made in the development of phenomenological theories. To sum up, even 
though the inequality aJ _-_ H can hold only for rather special (but hopefully 
physically relevant) situations, the assumptions of this kind are absolutely 
necessary in order to explain the Jeans criterion via a standard hydrody- 
namic argument. 

For the original Einstein-Boltzmann system, it is clear that much work 
remains to be done to develop these ideas into a fully effective tool. The 
situation would be radically different if strong analytical use could be made 
of the specific form of the relaxation-time collision term in (2.3). This has 
not yet been done, and the most significant application of the Einstein-Krook 
system would seem to be in problems which require a systematic derivation 
of the Jeans criterion for gravitational collapse. 

REFERENCES 

Banach, Z., and Piekarski, S. (1994a). Two linearization procedures for the Boltzmann equation 
in a k --- 0 Robertson-Walker space-time, Journal of Statistical Physics, 76(5/6) (in press). 

Banach, Z., and Piekarski, S. (1994b). Perturbation theory based on the Einstein-Boltzmann 
system. I. Illustration of the theory for a Robertson-Walker geometry, Journal of Mathemat- 
ical Physics, 35(9) (in press). 

Banach, Z., and Piekarski, S. (1994c). Perturbation theory based on the Einstein-Boltzmann 
system. II. Illustration of the theory for an almost-Robertson-Walker geometry, Journal 
of Mathematical Physics, 35(11) (in press). 

Bhatnagar, P. L., Gross, E. P., and Krook, M. (1954). Physical Review, 94, 511-525. 



Boltzmann Gas in RW Universe Models 777 

Dudyfiski, M., and Ekiel-Je~ewska, M. L. (1988). Communications in Mathematical Physics, 
115, 607-629. 

Misner, C, W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation, Freeman, San Francisco. 
Peebles, P. J. E. (1980). The Large-Scale Structure of the Universe, Princeton University Press, 

Princeton, New Jersey. 
Synge, J. L. (1957). The Relativistic Gas, North-Holland, Amsterdam. 


